Identifying motifs for evaluating open knowledge extraction on the Web

Open Knowledge Extraction (OKE) is the process of extracting knowledge from text and representing it in formalized machine readable format, by means of unsupervised, open-domain and abstractive techniques. Despite the growing presence of tools for reusing NLP results as linked data (LD), there is still lack of established practices and benchmarks for the evaluation of OKE results tailored to LD. In this paper, we propose to address this issue by constructing RDF graph banks, based on the definition of logical patterns called OKE Motifs. We demonstrate the usage and extraction techniques of motifs using a broad-coverage OKE tool for the Semantic Web called FRED. Finally, we use identified motifs as empirical data for assessing the quality of OKE results, and show how they can be extended trough a use case represented by an application within the Semantic Sentiment Analysis domain.

Publication type: 
Author or Creator: 
Gangemi, Aldo
Reforgiato Recupero, Diego
Mongiovi, Misael
Nuzzolese, Andrea Giovanni
Presutti, Valentina
Butterworths,, London , Regno Unito
Knowledge-based systems 108 (2016): 33–41. doi:10.1016/j.knosys.2016.05.023
info:cnr-pdr/source/autori:Gangemi, Aldo; Reforgiato Recupero, Diego; Mongiovi, Misael; Nuzzolese, Andrea Giovanni; Presutti, Valentina/titolo:Identifying motifs for evaluating open knowledge extraction on the Web/doi:10.1016/j.knosys.2016.05.023/rivista
Resource Identifier:
ISTC Author: 
Aldo Gangemi's picture
Real name: 
Valentina Presutti's picture
Real name: