Statistical Spectral Envelope Transformation applied to Emotional Speech

Transformation of sound by statistical techniques is a promising method for a new range of digital audio effects. In this paper a data driven voice transformation algorithm is used to alter the timbre of a neutral (non-emotional) voice in order to reproduce a particular emotional vocal timbre. Perceptually based Mel-Cepstral analysis and Mel Log Spectral Approximation digital filter are used to represent the speech timbre and to synthesize speech with modified spectral envelope. The transformation function adopts a GMM (Gaussian Mixture Model) based parametrization in order convert the spectral envelopes. Experiments with the first and second order derivatives of the mel-cepstral coefficients have been undertaken to prove the benefit of including dynamic information in the model. The proposed algorithm has been evaluated by means of objective measures in the neutral-to-happy and neutral-to-sad tasks.

Tipo Pubblicazione: 
Contributo in volume
Author or Creator: 
Fabio Tesser
Enrico Zovato
Piero Cosi
Helmut Schmidt University - University of the Federal Armed Forces, Hamburg, DEU
Proceedings of DAFx-10 13th International Conference on Digital Audio Effects, edited by Hannes Pomberger, Franz Zotter And Alois Sontacchi, pp. 479–482. Hamburg: Helmut Schmidt University - University of the Federal Armed Forces, 2010
Resource Identifier:
ISTC Author: 
Ritratto di Piero Cosi
Real name: