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Abstract. We present a neurorobotic model that develops reaching and
grasping skills analogous to those displayed by infants during their early
developmental stages. The learning process is realized in an incremental
manner, taking into account the reflex behaviors initially possessed by
infants and the neurophysiological and cognitive maturations occurring
during the relevant developmental period. The behavioral skills acquired
by the robots closely match those displayed by children. Moreover, the
comparison of the results obtained in a control non-incremental experi-
ment demonstrates how the limitations characterizing the initial devel-
opmental phase channel the learning process toward better solutions.

1 Introduction

The control of arm and hand movements in humans represents a fascinating
research area for researchers in psychology, neurosciences and robotics. The de-
velopment of reaching and grasping behaviors in humans, in particular, consti-
tutes one of the most deeply studied area of motor control. Despite of that, the
attempt to replicate the development of reaching and grasping skills comparable
to those acquired by humans still represents a challenging objective and an open
issue [24]. We present a neurorobotic model that develops reaching and grasping
skills analogous to those displayed by infants during their early developmental
stages. The model is designed by using a holistic approach that aims to identify
and model all the key characteristics of the natural phenomena, while abstract-
ing and simplifying all the aspects that do not play a key causal role. In the
context of infant reaching and grasping development, we hypothesize that the
following aspects and modeling choices constitute essential prerequisites:

Embodiment. With the term embodiment we refer to the fact that the mor-
phological and sensory-motor characteristics of the agent play an essential
role in adaptive behavior [21]. For this reason we carry out our experiments
by using a humanoid robot (the iCub) that matches to a good extent the
characteristics of human infants in term of morphology, kinematic structure,
and DoFs. Moreover, we design the sensory-motor system of the robot by
taking into account the empirical evidences about infants’ development.



Situatedness. Behavior is not only the result of the agent’s characteristics but
also of the agent/ environmental interactions. This aspect is accounted for
in our experiments by simulating the characteristics of the physical environ-
ment and of the robot/ environmental interaction in detail, and by using a
learning process and a control architecture that allow the robot to exploit
sensory-motor coordination and more generally properties emerging from the
agent/ environmental interaction. Moreover, we replicate as much as possi-
ble the characteristics of the experimental settings in which the behavior
of infants was studied [27, 33], see Fig. 1. This allows us to generate data
more easily comparable with experimental data, and to produce testable
predications for infant motor learning.

  

Fig. 1: The simulated setting (Left) is derived from experiments on real children
(Center and Right, adapted respectively from references [33] and [27]).

Nervous system and learning process. Here we refer to the formalism used
to specify the agent’s nervous system (or robot’s controller) and its plastic-
ity. In the context of infant reach/grasp development modeling addressed
in this paper, we implement the robot’s controller with an artificial neural
network and the learning process through a simple trial and error learning
algorithm that is driven by the observed consequences of the robot’s action
(visual and tactile feedback). The neuromimetic controller is not intended to
reproduce the detailed characteristics of the infants nervous system (at the
level of the single neurons or at the level of the nervous system architecture),
but to capture its essential features. The neural network formalism encodes
and processes quantitative information, operates over time, displays gener-
alization properties, and is a suitable and biologically plausible media for
the learning process. A learning algorithm operating on the basis of distal
somatosensory feedback complies with empirical evidences suggesting that
young infants overcome problems associated with reaching and grasping by
a self-learning trial and error process [28]. This form of learning allows the
exploitation of sensory-motor coordination and overcomes the initial lim-
ited visual capabilities of young infants. Those perceptual limitations may
prevent alternative form of learning, like imitation learning [17].



Incrementality. The fourth and last key aspect is constituted by the incre-
mental nature of the developmental process. Action development in new-
born infants does not start from scratch, as it is strongly influenced by
pre-existing behavioral skills and by concurrent maturational and develop-
mental processes. To take this aspects into account we provide the robot,
before learning takes place, with few simple reflexes homologous to some of
the reflexes initially possessed by infants. Moreover, we model the develop-
mental process in a series of cumulative phases subjected to physiological
modifications originating from tissues maturation [31] and cognitive modifi-
cations (e.g. increased ability to process visual information [2]).
In the next Section we describe the robotic model and the experimental sce-
nario in detail. In Section 3 we present the results. Finally, in Section 4 we
discuss the implication of the results and plans for the future.

2 Robotic Model and Experimental Scenario

A simulated iCub robot [23] is trained for the ability to reach and grasp a col-
ored ball located in its peripersonal space. The experimental scenario in which
we train the robot is derived from the experiments carried on with children of
about 4 months of age by Spencer and Thelen [27] and von Hofsten [33] (see Fig.
1). The robot is suspended vertically over a stick attached to the pelvis. In each
trial the ball is placed in a randomly selected point located within one of the 9
sectors of the spherical surface centered on the iCub neck (Fig. 2). The ball is
attached to a pendulum. The robot is provided with a neural controller that is
trained through a simple incremental trial and error process (Par. 2.4).
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Fig. 2: The thick line in the three pictures shows the portion of the spherical
surface in which the ball can be placed. To ensure a good distribution over space
of the target objects, the surface is virtually divided into 9 sectors.



2.1 The Robot

The iCub is a humanoid robot developed at IIT as part of the EU project
RobotCub [23, 30]. It has 53 motors that move the head, arms and hands, waist,
and legs. From the sensory point of view, the iCub is equipped with digital cam-
eras, gyroscopes and accelerometers, microphones, force/torque sensors, tactile
sensors. In the experiment reported in this paper, the sensors and actuators lo-
cated on the left arm and on the legs have not been used. The experiments have
been carried out by using the simulator developed at our lab by Gianluca Massera
and collaborators (freely available from http://laral.istc.cnr.it/laral++/farsa).
The simulator reproduces as accurately as possible the physics and the dynam-
ics of the robot and robot/environment interaction, and is based on the Newton
Game Dynamics open-source physics engine (http://newtondynamics.com).

2.2 The Robot’s Neural Controller and Sensory-motor System

The robot’s neural controller is constituted by a recurrent neural network that
receives proprioceptive input from the right arm, torso, and head, exteroceptive
input from the camera and the tactile sensors located on the right hand, and
controls the motors of the torso, head, and of the right arm/hand (Figure 3).
As can be seen from the figure, the sensory layer is connected to the motor
layer either directly, to take into account the fact that the initial pre-reaching
behavior observed in children is highly reflexive and oriented to sensory-motor
exploration [1, 20], or through 8 internal neurons to allow the robot to develop
more elaborated and effective motor strategies.
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Fig. 3: The architecture of the robot’s neural controller. Numbers between paren-
thesis represent the number of neurons, arrows indicate connections. Full arrows
indicate hand-designed connection weights used to implement motor reflexes.
Dashed thin and thick arrows indicate connection subjected to plasticity dur-
ing the first and the second training phases, respectively. Internal neurons are
added in the second phase. Notice that dashed arrows pointing to the motor
layer indicate connections toward all motor neurons.

Internal and motor neurons consist of integrator units (i.e. neurons whose
current state also depends on their previous state) that are updated as follows:

x
(t)
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i + (1− τi)s(t)i



Where x
(t)
i is the state of the i-th neuron at timestep t and 0 ≤ τi ≤ 1 is a time

constant associated to each neuron [16, 18]. s
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Where wij is the connection weight between the j-th and the i-th neuron, θi is
the neuron threshold and σ(z) is the sigmoidal function = 1/(1 + e−z).
The state of the sensors, the network, and the motors is updated every timestep
(0.1 seconds). The motor neurons set the desired angular position (scaled within
the robot’s joint limits) of 14 actuators controlling the following DoFs: head (3),
torso (3), right arm (7), right hand (1). Each motor neuron controls a DoF of the
robot with the exception of the hand, in which a single motor neuron controls
the extension/flexion of all the fingers. The proprioceptors encode the current
angular position of the corresponding joints (the average extension/flexion of
the fingers’ joints, in the case of the hand), scaled from -1 to 1.
A set of 6 tactile neurons binarily encode (-1 or 1) whether the corresponding
touch sensor located in the right hand palm and fingertips (Fig. 4, Left) de-
tects an obstacle or not. The 3 sight sensors encode pre-elaborated information
extracted from the cameras through a simple color blob identification software
routine. These sensors thus provide only a limited visual analysis of the object,
its position (or approximate position, see below) and a crude assessment of grasp
affordance. More precisely the first two encode the relative position of the color
blob corresponding to the ball in the robot’s visual field (Eq. 1 and 2) and the
third encodes the estimated ball distance up to 50cm (Eq. 3).

xsight1 = sgn(cx) · |cx|a (1)

xsight2 = sgn(cy) · |cy|a (2)

xsight3 =

{
1− 2l, if l < 0.5

0, otherwise.
(3)

Here cx and cy represent the coordinates of the detected color blob in the cam-
era image and sgn(x) is the sign of x. In accordance with experimental findings
on sight development [7, 8], we vary the visual acuity/peripherality of the robot
during the first and second training phases by setting the value of a to 3 and
to 1, respectively (see Fig. 4, Right). The third sensor encodes l, the eye-object
distance.

2.3 Learning Process

In accordance with empirical evidences indicating that early reaching and grasp-
ing skills in infants are acquired through self-learning mechanisms rather than
by imitation [17], the robot’s training is realized through a form of trial and
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Fig. 4: Left: Location of the touch sensors in the robot’s hand. Right: Dashed and
filled lines indicate the state assumed by sight sensors for different positions of
the colored blob in the camera image, for low and high acuity vision respectively.

error learning during which the robot is rewarded for sensorial exploration and
multimodal perception (seeing and touching [22]). More specifically, we evaluate
the performance level of the robot at each time step by taking the smaller score
between the perceptual modalities:

pmultimodal = min (psight, ptouch)

The value is averaged over 18 trials each lasting 20 seconds. psight measures the
distance between the barycenter of the object and the center of the robot’s visual
field, ptouch measures the number of inner hand/fingers segments in contact with
the object. Both factors are scaled between 0 and 1.
The agents are trained through a trial and error process in which the free param-
eters are varied randomly and variations are retained or discarded depending on
whether they lead to maximization of pmultimodal at the end of the 18 trials. This
is realized by using an evolutionary method [15]. The initial population consists
of 20 randomly generated genotypes encoding the connection weights, the biases,
and the time constants of 20 corresponding neural controllers (each parameter is
encoded by eight bits and mutated with probability 0.02). The training process
intends to represent ontogenetic learning. The reason behind the choice of this
algorithm is that is one of the simpler yet effective ways to train an embodied
neural network through a trial and error process based on a distal reward [25].

2.4 Incremental Training

The robot is subjected to an incremental training process organized into the
following three phases, inpired to those used to describe the development of
reaching/grasping in infants [10]:

1. The pre-reaching phase, that in infants extends from birth to approximately
4 months of age, is characterized by the presence of simple head orientation
[26] and grasping reflex behaviors [9], by a low involvement of cortical areas
[13], and by a low visual acuity [7, 8]. From the behavioral point of view this



phase is characterized by a primitive orientation behavior of the arm [32],
by the freezing of certain DoFs (i.e. by the reduced use of the distal DoFs
[3]), and by the emergence of a form of motor babbling (i.e. a quasi-periodic
behavior of the arm/hand leading to a form of exploration of the area in
which the object is located) [28, 34]. To subject the robot to a similar process
we initially provide it with two simple motor reflexes: an orienting response
that makes the robot turn its head toward the colored object [26] and a grasp
reflex that makes the robot close its fingers when its right palm touch sensor
becomes activated [9]. These reflexes are realized by manually setting the
connection weights indicated with full lines in Fig. 3. The immature visual
system is simulated by degrading visual acuity (see Section 2.2). Finally,
the limited role of cortical areas during this phase is realized by freezing
the connection weights to and from internal neurons to a null value (i.e. by
subjecting to plasticity only direct sensory-motor areas).

2. A gross-reaching phase, that extends approximately from month 4 to the
first year of age, is characterized by an improved visual acuity [7, 8] and by
an higher involvement of cortical areas [13]. This phase, that leads to an
improved reaching and grasping ability, is characterized by a initial motor
suppression [33], by a reduced use of motor babbling [34] and by de-freezing
of the distal DoFs [4, 9]. The variations occurring during this phase have
been modeled in the robotic experiment by increasing the visual acuity (see
Section 2.2) and by subjecting to plasticity also the internal neurons’ incom-
ing and outgoing connection weights. This loosely simulates the intervention
of cortical centers to mediate the sensori-motor reflexive behavior [13].

3. A fine-reaching phase not yet modeled in the experiment reported in this
paper, that follows the first year of life. From the behavioral point of view
this phase is characterized by a more reliable, faster and smoother reaching
and grasping behavior [4, 12, 14, 29]. In future experiments the variations
occurring during this phase will be modeled providing the robot’s neural
controller with additional sensory neurons encoding the current hand/object
spatial relation [6]. For more details and for videos of the trained robots see
http://laral.istc.cnr.it/esm/reach/.

3 Results and Discussion

The first objective of the work is to verify whether the robotic model proposed
could effectively lead to the acquisition of reaching and grasping skills analogous
to those developed by infants. The analysis of the performance (Fig. 5) shows
indeed that at the end of the pre-reaching phase robots manage to reach (i.e.
touch the object) through the exhibition of an exploratory behaviour (more
details below) in about half of the trials.

During the gross-reaching phase the robots develop an ability to orient their
arm toward the area in which the object is located and improve their ability to
grasp the object (i.e. touch the object with the palm and at least one of the fin-
gers). The comparison of the robots’ performance at the end of the pre-reaching
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Fig. 5: Boxplot of the performances observed at the end of the pre-reaching
and gross-reaching phases. Data computed by post-evaluating the best 5 robots
of each replication of the experiment for 45 trials. The straightness indicates
the ratio between the length of the trajectory of the hand during successfully
reaching actions and the hand/object initial distance (lower values correspond
to more efficient reaches).

and gross-reaching phase reveals a significant improvement in the frequency of
successful grasps and reach straightness (both with p < 0.001, two-tailed Mann-
Whitney U test). Surprisingly, the frequency of successful reaches is lower in
the gross-reaching phase (p < 0.001). This indicates that the robots specialize
on certain regions of their peripersonal space in which they can robustly grasp
an object, instead of trying to reach it in each position. For videos of robots
behavior see http://laral.istc.cnr.it/esm/reach/.
The robots’ behavior at the end of the pre-reaching phase (Fig. 6, Top and Bot-
tom respectively) is characterized by an exploratory motor babbling behavior
that is realized by extending the arm and by producing circular movements [19,
20, 28, 34] around the area in which the object can be located (Fig. 6, Top).
We compared this behavior (Fig. 6, Top Left) with a control condition in which
tactile stimulation is impaired (Fig. 6, Top Right). The confrontation indicates
that tactile stimulation plays almost no role in this phase. In the gross-reaching
phase instead, the robots keep producing an exploratory motor babbling behav-
ior which is now restricted in the area in which the object is located and regulate
their movement on the basis of tactile information so to keep touching and to
grasp the object (Fig. 6, Bottom Left and Right pictures).
Moreover, the behavior displayed by the robots at the end of the pre-reaching
phase is characterized by a large use of the DoFs of the trunk and of the shoulder
and by a reduced use (locking) of the elbow DoF. This is demonstrated by the
fact that, as in the case of real infants [3, 27], the distance between the shoulder
and the hand remains almost constant during reaching attempts (Fig. 7). Note
that after touching the ball (distance< 0.1 meters in Fig. 7) the robot is not
yet able to remain near the ball at the end of the pre-reaching phase. This skill
starts to be developed during the gross-reaching phase.

The second objective of the experiments is to verify whether the realization
of an incremental process analogous to those occurring in humans facilitates the
development of the required skills and/or channels the developmental process
toward specific solutions (Fig. 8). To study this aspect we ran a non-incremental
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Fig. 6: Typical trajectories of the hand in 3D during a trial produced by a robot
at the end of the pre-reaching (Top) and gross-reaching (Bottom) phase. Tests
performed by placing the target object in the central position. Results produced
in a normal (Left) and control (Right) condition in which robots are deprived
from tactile stimulation.

control experiment involving a single developmental phase (lasting the sum of
the pre-reaching and gross-reaching phases) in which the robots are not provided
with reflexes and are have from the beginning both high visual acuity and inter-
nal processing resources (i.e. plastic internal neurons). The performance in this
control condition is significantly lower than the performance of the gross-reaching
condition (p < 0.001, two-tailed Mann-Whitney U test), indicating that indeed
the incremental process enables the development of more effective solutions. The
fact that robots trained in the non-incremental condition do not display motor
babbling suggests that the development of motor babbling plays an important
functional role. An additional control experiment performed in a pre-reaching
condition with high visual acuity did not lead to significantly different perfor-
mance respect the low-acuity pre-reaching condition (p = 0.14), indicating that
the main factor channeling the developmental process toward effective human-
like behavior is constituted by the addition of the internal neurons.

4 Conclusions

We illustrated how the design of humanoid robots able to develop relatively com-
plex action capabilities can be successfully approached by using robotic models
that incorporate the following fundamental aspects: embodiment, situatedness,
brain-like control/learning, incremental development. The use of an experimen-
tal setting similar to those employed by experimental psychologists to study
children’s behavior allowed us to closely compare human and robot data.
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The analysis of the behavioral skills acquired by the robots indicate they
closely match those displayed by infants. More specifically, during the pre-
reaching phase robots develop a motor babbling strategy similar to that observed
in infants [20, 28, 34]. The development of such strategy is channelled primarily
by the availability of limited internal processing capabilities. This maturational
constraint [31], possibly coupled with the presence of reflexes, constitutes a pre-
requisite for the development of better capability later on since allows robots
initially provided with limited internal resources to later outperform (when in-
ternal resources become available) robots not affected by this initial limitation.
As in the case of infants, the developmental process in robots leads to a form of
proximo-distal maturation of the DoFs [3]. Indeed, during the first developmen-
tal phase, the robots immediately extend the arm and try to reach and grasp the
object by exploiting the DoFs of the trunk and of the shoulder while locking the
DoF of the elbow. The spontaneous freezing of the elbow joint in our experiments
suggests that proximo-distal maturation might result as a side effect of the need
to start from simple control policies rather than a maturational constraint [5].
Finally, the results indicating that the incremental version of the model leads to
better performing robots than the non-incremental control experiment demon-
strates that the incremental process might represent a key factor not only from
a modeling but also from an engineering point of view.
In future works we will extend the simulations to the fine-reaching phase, by



providing the robot with sensors encoding information about the hand/object
offset. Finally we will test the trained neural controller in hardware. The long
term challenge we propose is to identify the scalability of this approach and its
applications to different domains in robotics and control.
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